Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Funct Biomater ; 13(4)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36412895

RESUMO

The antibacterial properties of nanomaterials (NMs) can be exploited in a range of consumer products (e.g., wound dressings, food packaging, textiles, medicines). There is also interest in the exploitation of NMs as treatments for infectious diseases to help combat antibiotic resistance. Whilst the antibacterial activity of NMs has been assessed in vitro and in vivo in numerous studies, the methodology used is very varied. Indeed, while numerous approaches are available to assess the antibacterial effect of NMs in vitro, they have not yet been systematically assessed for their suitability and sensitivity for testing NMs. It is therefore timely to consider what assays should be prioritised to screen the antibacterial properties of NMs. The majority of existing in vitro studies have focused on investigating the antibacterial effects exhibited by silver (Ag) NMs and have employed a limited range of assays. We therefore compared the antibacterial effects of copper oxide (CuO) NMs to Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis at various concentrations (12.5-200 µg/mL) using a battery of tests (well and disc diffusion, plate counts-time-kill method, optical density measurement-OD, Alamar Blue and live/dead viability assays, and quantitative polymerase chain reaction). CuO NMs were most toxic to B. subtilis and E. coli, while P. aeruginosa was the least sensitive strain. All assays employed detected the antibacterial activity of CuO NMs; however, they varied in their sensitivity, time, cost, technical difficulty and requirement for specialized equipment. In the future, we suggest that a combination of approaches is used to provide a robust assessment of the antibacterial activity of NMs. In particular, we recommend that the time-kill and OD assays are prioritised due to their greater sensitivity. We also suggest that standard operating protocols are developed so that the antibacterial activity of NMs can be assessed using a harmonised approach.

2.
Appl Microbiol Biotechnol ; 105(8): 3315-3325, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33797573

RESUMO

BACKGROUND: Conducting polymer based nanocomposites are known to be effective against pathogens. Herein, we report the antimicrobial properties of multifunctional polypyrrole-cobalt oxide-silver nanocomposite (PPy-Co3O4-AgNPs) for the first time. Antibacterial activities were tested against multi-drug-resistant Gram-negative Escherichia coli (E. coli) and Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) bacteria, while antiamoebic effects were assessed against opportunistic protist Acanthamoeba castellanii (A. castellanii). RESULTS: The ternary nanocomposite containing conducting polymer polypyrrole, cobalt oxide, and silver nanoparticles showed potent antimicrobial effects against these pathogens. The antibacterial assay showed that PPy-Co3O4-AgNPs exhibited significant bactericidal activity against neuropathogenic E. coli K1 at only 8 µg/mL as compared to individual components of the nanocomposite, whereas a 70 % inhibition of A. castellanii viability was observed at 50 µg/mL. Moreover, PPy-Co3O4-AgNPs were found to have minimal cytotoxicity against human keratinocytes HaCaT cells in vitro even at higher concentration (50 µg/mL), and also reduced the microbes-mediated cytopathogenicity against host cells. CONCLUSION: These results demonstrate that PPy-Co3O4-AgNPs hold promise in the development of novel antimicrobial nanomaterials for biomedical applications. KEY POINTS: •Synthesis of polypyrrole-cobalt oxide-silver (PPy-Co3O4-AgNPs) nanocomposite. •Antimicrobial activity of nanocomposite. •PPy-Co3O4-AgNPs hold promise for biomedical applications.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Nanocompostos , Parasitos , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias , Cobalto , Escherichia coli , Humanos , Testes de Sensibilidade Microbiana , Óxidos , Polímeros , Pirróis/farmacologia , Prata/farmacologia
3.
BMC Microbiol ; 21(1): 51, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596837

RESUMO

BACKGROUNDS: Escherichia coli K1 causes neonatal meningitis. Transcriptome studies are indispensable to comprehend the pathology and biology of these bacteria. Recently, we showed that nanoparticles loaded with Hesperidin are potential novel antibacterial agents against E. coli K1. Here, bacteria were treated with and without Hesperidin conjugated with silver nanoparticles, and silver alone, and 50% minimum inhibitory concentration was determined. Differential gene expression analysis using RNA-seq, was performed using Degust software and a set of genes involved in cell stress response and metabolism were selected for the study. RESULTS: 50% minimum inhibitory concentration with silver-conjugated Hesperidin was achieved with 0.5 µg/ml of Hesperidin conjugated with silver nanoparticles at 1 h. Differential genetic analysis revealed the expression of 122 genes (≥ 2-log FC, P< 0.01) in both E. coli K1 treated with Hesperidin conjugated silver nanoparticles and E. coli K1 treated with silver alone, compared to untreated E. coli K1. Of note, the expression levels of cation efflux genes (cusA and copA) and translocation of ions, across the membrane genes (rsxB) were found to increase 2.6, 3.1, and 3.3- log FC, respectively. Significant regulation was observed for metabolic genes and several genes involved in the coordination of flagella. CONCLUSIONS: The antibacterial mechanism of nanoparticles maybe due to disruption of the cell membrane, oxidative stress, and metabolism in E. coli K1. Further studies will lead to a better understanding of the genetic mechanisms underlying treatment with nanoparticles and identification of much needed novel antimicrobial drug candidates.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Perfilação da Expressão Gênica , Hesperidina/farmacologia , Nanopartículas Metálicas/química , Prata/farmacologia , Hesperidina/química , Testes de Sensibilidade Microbiana , Estresse Oxidativo/efeitos dos fármacos , Transcriptoma
4.
Antibiotics (Basel) ; 8(4)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835647

RESUMO

The emergence of drug resistance combined with limited success in the discovery of newer and effective antimicrobial chemotherapeutics poses a significant challenge to human and animal health. Nanoparticles may be an approach for effective drug development and delivery against infections caused by multi-drug resistant bacteria. Here we discuss nanoparticles therapeutics and nano-drug delivery against bacterial infections. The therapeutic efficacy of numerous kinds of nanoparticles including nanoantibiotics conjugates, small molecules capped nanoparticles, polymers stabilized nanoparticles, and biomolecules functionalized nanoparticles has been discussed. Moreover, nanoparticles-based drug delivery systems against bacterial infections have been described. Furthermore, the fundamental limitation of biocompatibility and biosafety of nanoparticles is also conferred. Finally, we propose potential future strategies of nanomaterials as antibacterials.

5.
Antibiotics (Basel) ; 8(4)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600971

RESUMO

Infections due to multi-drug resistant bacteria are on the rise and there is an urgent need to develop new antibacterials. In this regard, a series of six functionally diverse new quinazolinone compounds were synthesized by a facile one-pot reaction of benzoic acid derivatives, trimethoxymethane and aniline derivatives. Three compounds of 3-aryl-8-methylquinazolin-4(3H)-one, and 3-aryl-6,7-dimethoxyquinazolin4(3H)-one were prepared and tested against multi-drug resistant bacteria. Furthermore, we determined whether conjugation with silver nanoparticles improved the antibacterial efficacy of these quinazolinone derivatives. The newly synthesized compounds were characterized by ultraviolet visible spectrophotometry (UV-vis), Zetasizer analysis, Fourier transform infrared spectroscopic methods (FT-IR), and scanning electron microscopy (SEM). Using bactericidal evaluation, effects were determined against selected Gram-negative and Gram-positive bacteria. Furthermore, cytotoxicity of nanoconjugates on human cells were determined. The UV-vis spectrum of silver nanoparticles conjugated quinazolinone displayed surface plasmon resonance band in the range of 400-470 nm, and the size of nanoparticles was detected to be in the range of 100-250 nm by dynamic light scattering (DLS). FT-IR study confirmed the stabilization of silver nanoparticles by the presence of diverse functional arayl on each compound. SEM further revealed the construction of spherical nanoparticles. Among the quinazolinone derivative tested, two compounds (QNZ 4, QNZ 6) conjugated with silver nanoparticles showed enhanced antibacterial activity against Escherichia coli K1, Streptococcus pyogenes, Klebsiella pneumoniae, B. cereus and P. aeruginosa as compared to the compounds.

6.
Sci Rep ; 9(1): 3122, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816269

RESUMO

Herein, we report green synthesized nanoparticles based on stabilization by plant gums, loaded with citrus fruits flavonoids Hesperidin (HDN) and Naringin (NRG) as novel antimicrobial agents against brain-eating amoebae and multi-drug resistant bacteria. Nanoparticles were thoroughly characterized by using zetasizer, zeta potential, atomic force microscopy, ultravoilet-visible and Fourier transform-infrared spectroscopic techniques. The size of these spherical nanoparticles was found to be in the range of 100-225 nm. The antiamoebic effects of these green synthesized Silver and Gold nanoparticles loaded with HDN and NRG were tested against Acanthamoeba castellanii and Naegleria fowleri, while antibacterial effects were evaluated against methicillin-resistant Staphylococcus aureus (MRSA) and neuropathogenic Escherichia coli K1. Amoebicidal assays revealed that HDN loaded Silver nanoparticles stabilized by gum acacia (GA-AgNPs-HDN) quantitatively abolished amoeba viability by 100%, while NRG loaded Gold nanoparticles stabilized by gum tragacanth (GT-AuNPs-NRG) significantly reduced the viability of A. castellanii and N. fowleri at 50 µg per mL. Furthermore, these nanoparticles inhibited the encystation and excystation by more than 85%, as well as GA-AgNPs-HDN only completely obliterated amoeba-mediated host cells cytopathogenicity. Whereas, GA-AgNPs-HDN exhibited significant bactericidal effects against MRSA and E. coli K1 and reduced bacterial-mediated host cells cytotoxicity. Notably, when tested against human cells, these nanoparticles showed minimal (23%) cytotoxicity at even higher concentration of 100 µg per mL as compared to 50 µg per mL used for antimicrobial assays. Hence, these novel nanoparticles formulations hold potential as therapeutic agents against infections caused by brain-eating amoebae, as well as multi-drug resistant bacteria, and recommend a step forward in drug development.


Assuntos
Amebicidas/administração & dosagem , Antibacterianos/administração & dosagem , Flavanonas/administração & dosagem , Hesperidina/administração & dosagem , Nanopartículas/química , Gomas Vegetais/química , Acanthamoeba castellanii/efeitos dos fármacos , Amebíase/tratamento farmacológico , Amebicidas/química , Amebicidas/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Citrus/química , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Flavanonas/química , Flavanonas/farmacologia , Química Verde , Goma Arábica/química , Hesperidina/química , Hesperidina/farmacologia , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico
7.
Antibiotics (Basel) ; 7(4)2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445704

RESUMO

This paper sets out to determine whether silver nanoparticles conjugation enhance the antibacterial efficacy of clinically approved drugs. Silver conjugated Cephradine and Vildagliptin were synthesized and thoroughly characterized by ultraviolet visible spectrophotometry (UV-vis), Fourier transform infrared (FT-IR) spectroscopic methods, atomic force microscopy (AFM), and dynamic light scattering (DLS) analysis. Using antibacterial assays, the effects of drugs alone and drugs-conjugated with silver nanoparticles were tested against a variety of Gram-negative and Gram-positive bacteria including neuropathogenic Escherichia coli K1, Pseudomonas aeruginosa, Klebsiella pneumoniae, methicillin-resistant Staphylococcus aureus (MRSA), Bacillus cereus and Streptococcus pyogenes. Cytopathogenicity assays were performed to determine whether pretreatment of bacteria with drugs inhibit bacterial-mediated host cell cytotoxicity. The UV-vis spectra of both silver-drug nanoconjugates showed a characteristic surface plasmon resonance band in the range of 400⁻450 nm. AFM further confirmed the morphology of nanoparticles and revealed the formation of spherical nanoparticles with size distribution of 30⁻80 nm. FT-IR analysis demonstrated the involvement of Hydroxyl groups in both drugs in the stabilization of silver nanoparticles. Antibacterial assays showed that silver nanoparticle conjugation enhanced antibacterial potential of both Cephradine and Vildagliptin compared to the drugs alone. Pretreatment of bacteria with drugs inhibited E. coli K1-mediated host cell cytotoxicity. In summary, conjugation with silver nanoparticle enhanced antibacterial effects of clinically approved Cephradine. These findings suggest that modifying and/or repurposing clinically approved drugs using nanotechnology is a feasible approach in our search for effective antibacterial molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...